On using genetic algorithms for multimodal relevance optimization in information retrieval
نویسندگان
چکیده
This paper presents a genetic relevance optimisation process performed in an information retrieval system. The process uses genetic techniques for solving multimodal problems (niching) and query reformulation techniques commonly used in information retrieval. The niching technique allows the process to reach different relevance regions of the document space. Query reformulation techniques represent domain knowledge integrated in the genetic operators structure in order to improve the convergence conditions of the algorithm. Experimental analysis performed using a TREC sub-collection validates our
منابع مشابه
On using genetic algorithms for multimodal relevance optimisation in information retrieval
This paper presents a genetic relevance optimisation process performed in an information retrieval system. The process uses genetic techniques for solving multimodal problems (niching) and query reformulation techniques commonly used in information retrieval. The niching technique allows the process to reach different relevance regions of the document space. Query reformulation techniques repre...
متن کاملFuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization
In the last decades, many efforts have been made to solve multimodal optimization problems using Particle Swarm Optimization (PSO). To produce good results, these PSO algorithms need to specify some niching parameters to define the local neighborhood. In this paper, our motivation is to propose the novel neighborhood structures that remove undesirable niching parameters without sacrificing perf...
متن کاملChaotic Genetic Algorithm based on Explicit Memory with a new Strategy for Updating and Retrieval of Memory in Dynamic Environments
Many of the problems considered in optimization and learning assume that solutions exist in a dynamic. Hence, algorithms are required that dynamically adapt with the problem’s conditions and search new conditions. Mostly, utilization of information from the past allows to quickly adapting changes after. This is the idea underlining the use of memory in this field, what involves key design issue...
متن کاملDocument Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کاملOptimisation de la pertinence dans un SRI: Un problème multi-modal approché sous l'angle de la génétique
This paper presents a genetic relevance optimisation process performed in an information retrieval system. The process uses both genetic technique for solving multimodal problems witch is namely niching, and query reformulation techniques commonly used in information retrieval. Niching technique allows the process to reach different relevance regions of the document space. Query reformulation t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JASIST
دوره 53 شماره
صفحات -
تاریخ انتشار 2002